Abstract #41

Genomic-based health-screening of reintroduced *Emys orbicularis*

Eichert C.₁, Meka J.₂, Baranski D.₄, Schell T.₄, Romahn J.₄, Georges J.-Y.₃, Quintard B.₅, Theissinger K.₂

, Department of Biogeography, University of Trier, Trier, Germany; ₂lustus Liebig University Giessen, Institute for Insect Biotechnology, Giessen, Germany; ₃Université de Strasbourg, CNRS, IPHC, UMR7178, Strasbourg, France; ₄Senckenberg Gesellschaft für Naturforschung, Georg-Voigt-Straße 14-16, Frankfurt/Main, Germany; ₅Parc Zoologique et Botanique de Mulhouse, Mulhouse, France

Introduction

Emys-R: participatory action-oriented research for defining the most effective methods of wetland restoration in favor of *Emys* o. reintroduction and associated biodiversity throughout Europe (<u>one</u> health)

Microbiome research: integrative understanding of patterns of microbial diversity and early signs of impending microbial disruption -> valuable tool for promoting individual health for most operational conservation strategies

Methodology

screening gut microbial community along broad biogeographic gradient (FR, LV, ES) scanning microbiome and infective pathogen load via turtles' fecal, cloacal & combined oral cloacal swabs metagenomic approach based on Next Generation

Prospect

- biomarker identification + functional annotation
- -> dysbiosis index -> health status

:

٠

- screening of pathogens (*Rana-, Adeno-, Herpesvirus, Mycoplasma*) of larger sample size + at the breeding centres
- combine microbiome data with information on turtles' diet (J. Meka)
- combine microbiome with SMI and reproductive output (J.-Y. Georges)

Hypotheses

- Microbiome <-> immune system & host physiology interactions: change in taxonomic community structure in health impaired turtles
 > a calculated body condition index will positively
- correlate with a more heterogenous (presumably healthier) turtle gut microbiome

Preliminary results

 - Bacterial species richness significantly higher in faecal samples compared to cloacal swab samples.

Mantel statistic based on Pearson's product-moment correlation between bacterial species richness and body condition index (SMI):

Mantel statistic r: 0.02821 Significance: 0.285 => non-significant

TRIER